Reliability assessment of autonomous vehicles based on the safety control structure
Feipeng Wang,
Diana Filipa Araújo and
Yan-Fu Li
Journal of Risk and Reliability, 2023, vol. 237, issue 2, 389-404
Abstract:
The recent social trends and accelerated technological progress culminated in the development of autonomous vehicles (AVs). Reliability assessment for AV systems is in high demand before its market launch. In safety-critical systems (SCSs) such as AV systems, the reliability concept should be broadened to consider more safety-related issues. In this paper, reliability is defined as the probability that the system performs satisfactorily for a given period of time under stated conditions. This paper proposes a reliability assessment framework of AV, consisting of three main stages: (i) modeling the safety control structure through the Systems-Theoretic Accident Model and Processes (STAMP); (ii) mapping the control structure and functional relationships to a directed acyclic graph (DAG); and (iii) construct a Bayesian network (BN) on DAG to assess the system reliability. The fully automated (level 5) vehicle system is shown as a numeric example to illustrate how this suggested framework works. A brief discussion on involving human factors in systems to analyze lower levels of automated vehicles is also included, demonstrating the need for further research on real case studies.
Keywords: System theoretic process analysis; Bayesian network; autonomous vehicles; reliability assessment; automotive reliability (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X211069705 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:237:y:2023:i:2:p:389-404
DOI: 10.1177/1748006X211069705
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().