Gear fault diagnosis based on bidimensional time-frequency information theoretic features and error-correcting output codes: A multi-class support vector machine
Akhand Rai,
Jong-Myon Kim,
Anil Kumar and
Palani Selvaraj Balaji
Journal of Risk and Reliability, 2025, vol. 239, issue 3, 552-567
Abstract:
Fault diagnosis of gears plays an important role in reducing downtime and maximizing efficiency of rotating machinery. Vibration is popular parameter for gear fault detection. The occurrence of faults produces recurring transient impulses in the gear vibration signals. However, these transient features are heavily masked by background noises making it difficult to investigate gear faults. Furthermore, the development of automated fault diagnosis techniques requiring minimal human supervision poses another big challenge. Consequently, in this paper, an automated fault diagnosis technique based on a novel information theoretic (IT)-derived-feature set and an artificial intelligence technique called as error-correcting output codes-support vector machine (ECOC-SVM) is proposed. The gear vibration signals are first processed by continuous wavelet transform to obtain the corresponding time-frequency distributions (TFDs). The TFDs of the faulty signals are then discriminated from those of the healthy ones by introducing IT measures, namely, Kulback-Leibller divergence (KLD), Jensen-Shannon divergence (JSD), Jensen-Rényi divergence (JRD), and Jensen-Tsallis divergence (JTD). These uni-dimensional-IT measures are modified to accommodate the bidimensional TFDs, and the resultant features are referred to as bidimensional time-frequency information theoretic divergence (BTF-ITD) features. The BTF-ITD features are then used to train the ECOC-SVM model. Finally, the trained ECOC-SVM model is used for testing the gear faults. The ECOC approach rectifies the biases and errors in SVM model predictions. The experimental results confirm that the proposed approach provides higher classification accuracy than time-domain features; voting-based-multiclass SVM; and deep learning techniques, such as those based on the stacked sparse autoencoder (SSAE), deep neural network (DNN), and convolution neural network (CNN).
Keywords: Gear; fault diagnosis; bidimensional time-frequency divergence measures; error-correcting output codes-support vector machine (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X241254603 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:239:y:2025:i:3:p:552-567
DOI: 10.1177/1748006X241254603
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().