Analysis of Crash Severity for Hazard Material Transportation Using Highway Safety Information System Data
Xiuguang Song,
Jianqing Wu,
Hongbo Zhang and
Rendong Pi
SAGE Open, 2020, vol. 10, issue 3, 2158244020939924
Abstract:
Crash severity, as a major concern in the routing and scheduling of hazardous material shipments, has caused great loss of lives and property damage every year. Although abundant studies have been conducted to identify the relationship between different factors on crash severity, the analysis of the severity of hazard material transportation (HMT) crashes is very limited. Factors including road, vehicle, driver, and environment are not well considered in previous studies. This article analyzed the influence of various factors on HMT crash severity using Highway Safety Information System data. The random forest combined with the ordered logistic model is used for factor analysis. The results showed that annual average daily traffic, fatigues/asleep, number of lanes, speeding, adverse weather, and light are the six most important factors affecting HMT crash severity. Different from the non-HMT crashes, driver factor (e.g., driver age, gender, and drug/alcohol influence) was found to be not significantly related to crash severity. Speeding should be strictly forbidden for HMT drivers, considering the potential increased crash severity. Increasing the level of lighting can help reduce the number of severe crashes. The corresponding recommendations were provided based on the regression results.
Keywords: hazard material transportation; factor analysis; HSIS (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/2158244020939924 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:sagope:v:10:y:2020:i:3:p:2158244020939924
DOI: 10.1177/2158244020939924
Access Statistics for this article
More articles in SAGE Open
Bibliographic data for series maintained by SAGE Publications ().