EconPapers    
Economics at your fingertips  
 

A Novel Approach to Air Passenger Index Prediction: Based on Mutual Information Principle and Support Vector Regression Blended Model

Honglin Xiong, Chongjun Fan, Hongmin Chen, Yun Yang, Collins Opoku Antwi and Xiaomao Fan

SAGE Open, 2022, vol. 12, issue 1, 21582440211071102

Abstract: Air passenger traffic prediction is crucial for the effective operation of civil aviation airports. Despite some progress in this field, the prediction accuracy and methods need further improvement. This paper proposes an integrated approach to the prediction of air passenger index as follows. Firstly, the air passenger index is defined and classified by the K-means clustering method. And then, based on mutual information (MI) principle, the information entropy is used to analyze and select the key influencing factors of air passenger travel. By incorporating the MI principle into the support vector regression (SVR) framework, this paper presents an innovative MI-SVR machine learning model used to predict the air passenger index. Finally, the proposed model is validated by air passenger throughput data of the Shanghai Pudong International Airport (PVG), China. The experimental results prove MI-SVR model feasibility and effectiveness by comparing them with conventional methods, such as ARIMA, LSTM, and other machine learning models. Besides, it is shown that the prediction effect of each model could be improved by introducing influencing factors based on MI. The main findings are considered instrumental to the airport operation and air traffic optimization.

Keywords: airport operation and management; air passenger index (API) prediction; machine learning; mutual information; SVR; K-means (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/21582440211071102 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:sagope:v:12:y:2022:i:1:p:21582440211071102

DOI: 10.1177/21582440211071102

Access Statistics for this article

More articles in SAGE Open
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:sagope:v:12:y:2022:i:1:p:21582440211071102