The Study of Hierarchical Learning Behaviors and Interactive Cooperation Based on Feature Clusters
Tianjiao Wang and
Xiaona Xia
SAGE Open, 2023, vol. 13, issue 2, 21582440231166593
Abstract:
The study of learning behaviors with multi features is of great significance for interactive cooperation. The data prediction and decision are to realize the comprehensive analysis and value mining. In this study, hierarchical learning behavior based on feature cluster is proposed. Based on the massive data in interactive learning environment, the descriptive model and learning algorithm suitable for feature clustering are designed, and sufficient experiments obtain the optimal performance indexes. The data analysis results are reliable. On this basis, the hierarchical learning behaviors based on feature clusters are visualized, the rules of different learning behaviors are summarized, then we propose the practical scheme of interactive cooperation. The hierarchical learning behaviors can be realized by feature clusters, which can effectively improve the modes of interactive cooperation, and help to improve the learning effectiveness.
Keywords: interactive learning environment; feature cluster; hierarchical learning behavior; interactive cooperation; learning analytics (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/21582440231166593 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:sagope:v:13:y:2023:i:2:p:21582440231166593
DOI: 10.1177/21582440231166593
Access Statistics for this article
More articles in SAGE Open
Bibliographic data for series maintained by SAGE Publications ().