Artificial and Convolutional Neural Network Architectures for Childhood Stunting Classification: Design, Evaluation, and Optimization
Abdelaziz Hendy,
Rasha Kadri Ibrahim,
Sally Mohammed Farghaly Abdelaliem,
Ibrahim Naif Alenezi,
Shaban Majed Sinnokrot,
Nasser Aldosari,
Afrah Madyan Alshammari and
Ahmed Hendy
SAGE Open, 2025, vol. 15, issue 3, 21582440251365428
Abstract:
Childhood stunting is a global health challenge, affecting 148 million children under 5 in 2022. It is a key indicator of chronic malnutrition, often driven by inadequate nutrition, recurrent infections, and socio-economic disparities. In Egypt, 22% of children under 5 are stunted, leading to cognitive delays, poor educational outcomes, and long-term economic losses. Innovative and interdisciplinary approaches are essential to address this issue. This research aims to enhance the detection of growth abnormalities in children using advanced machine learning models, including Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Autoencoder-based architectures. The study utilized secondary data from Demographic Health Surveys (DHS) conducted in Egypt between 2005 and 2014, comprising 37,051 records. Key maternal and child characteristics were analyzed to calculate Height-for-Age Z -scores (HAZ) and Weight-for-Age Z -scores (WAZ). A 70:30 train-test split was applied, and dropout layers were used to prevent overfitting during model training. The ANN model achieved 99.5% accuracy, with a precision of 97.2% for normal cases and 95.4% for severely stunted cases. The CNN model achieved lower accuracy (68%) but provided valuable insights into spatial growth patterns. Autoencoder-enhanced models (e.g., AE + ANN) demonstrated moderate performance, with AE + ANN achieving 77.2% accuracy. Misclassification rates for stunted versus severely stunted cases reached up to 14%. This study demonstrates the potential of machine learning models in early detection and intervention for childhood stunting. By leveraging automated, data-driven approaches, healthcare providers can make evidence-based decisions, allocate resources effectively, and improve child health outcomes in Egypt and beyond.
Keywords: artificial neural networks; convolutional neural networks; autoencoders; stunting; child nutrition disorders; Egypt (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/21582440251365428 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:sagope:v:15:y:2025:i:3:p:21582440251365428
DOI: 10.1177/21582440251365428
Access Statistics for this article
More articles in SAGE Open
Bibliographic data for series maintained by SAGE Publications ().