The Impact of Ignoring a Level of Nesting Structure in Multilevel Mixture Model
Qi Chen
SAGE Open, 2012, vol. 2, issue 1, 2158244012442518
Abstract:
Mixture modeling has gained more attention among practitioners and statisticians in recent years. However, when researchers analyze their data using finite mixture model (FMM), some may assume that the units are independent of each other even though it may not always be the case. This article used simulation studies to examine the impact of ignoring a higher nesting structure in multilevel mixture models. Results indicate that the misspecification results in lower classification accuracy of individuals, less accurate fixed effect estimates, inflation of lower level variance estimates, and less accurate standard error estimates in each subpopulation, the latter result of which in turn affects the accuracy of tests of significance for the fixed effects. The magnitude of the intraclass correlation (ICC) coefficient has a substantial impact. The implication for applied researchers is that it is important to model the multilevel data structure in mixture modeling.
Keywords: multilevel mixture model; finite mixture model; multilevel modeling; intraclass correlation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/2158244012442518 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:sagope:v:2:y:2012:i:1:p:2158244012442518
DOI: 10.1177/2158244012442518
Access Statistics for this article
More articles in SAGE Open
Bibliographic data for series maintained by SAGE Publications ().