A New Picture of Protest
Kraig Beyerlein,
Peter Barwis,
Bryant Crubaugh and
Cole Carnesecca
Sociological Methods & Research, 2018, vol. 47, issue 3, 384-429
Abstract:
The National Study of Protest Events (NSPE) employed hypernetwork sampling to generate the first-ever nationally representative sample of protest events. Nearly complete information about various event characteristics was collected from participants in 1,037 unique protests across the United States in 2010 to 2011. The first part of this article reviews extant methodologies in protest-event research and discusses how the NSPE overcomes their recognized limitations. Next, we detail how the NSPE was conducted and present descriptive statistics for a number of important event characteristics. The hypernetwork sample is then compared to newspaper reports of protests. As expected, we find many differences in the types of events these sources capture. At the same time, the overall number and magnitude of the differences are likely to be surprising. By contrast, little variation is observed in how protesters and journalists described features of the same events. NSPE data have many potential applications in the field of contentious politics and social movements, and several possibilities for future research are outlined.
Keywords: protest events; hypernetwork sampling; social movements; contentious politics; collective action (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0049124116661574 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:somere:v:47:y:2018:i:3:p:384-429
DOI: 10.1177/0049124116661574
Access Statistics for this article
More articles in Sociological Methods & Research
Bibliographic data for series maintained by SAGE Publications ().