EconPapers    
Economics at your fingertips  
 

How Many Imputations Do You Need? A Two-stage Calculation Using a Quadratic Rule

Paul T. von Hippel

Sociological Methods & Research, 2020, vol. 49, issue 3, 699-718

Abstract: When using multiple imputation, users often want to know how many imputations they need. An old answer is that 2–10 imputations usually suffice, but this recommendation only addresses the efficiency of point estimates. You may need more imputations if, in addition to efficient point estimates, you also want standard error ( SE ) estimates that would not change (much) if you imputed the data again. For replicable SE estimates, the required number of imputations increases quadratically with the fraction of missing information (not linearly, as previous studies have suggested). I recommend a two-stage procedure in which you conduct a pilot analysis using a small-to-moderate number of imputations, then use the results to calculate the number of imputations that are needed for a final analysis whose SE estimates will have the desired level of replicability. I implement the two-stage procedure using a new SAS macro called %mi_combine and a new Stata command called how_many_imputations.

Keywords: missing data; missing values; incomplete data; multiple imputation; imputation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0049124117747303 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:somere:v:49:y:2020:i:3:p:699-718

DOI: 10.1177/0049124117747303

Access Statistics for this article

More articles in Sociological Methods & Research
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:somere:v:49:y:2020:i:3:p:699-718