The Double Bind of Qualitative Comparative Analysis
Vincent Arel-Bundock
Sociological Methods & Research, 2022, vol. 51, issue 3, 963-982
Abstract:
Qualitative comparative analysis (QCA) is an influential methodological approach motivated by set theory and boolean logic. QCA proponents have developed algorithms to analyze quantitative data, in a bid to uncover necessary and sufficient conditions where causal relationships are complex, conditional, or asymmetric. This article uses computer simulations to show that researchers in the QCA tradition face a vexing double bind. On the one hand, QCA algorithms often require large data sets in order to recover an accurate causal model, even if that model is relatively simple. On the other hand, as data sets increase in size, it becomes harder to guarantee data integrity, and QCA algorithms can be highly sensitive to measurement error, data entry mistakes, or misclassification.
Keywords: qualitative comparative analysis; Monte Carlo simulation; measurement error; sample size; research methods; configurational diversity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0049124119882460 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:somere:v:51:y:2022:i:3:p:963-982
DOI: 10.1177/0049124119882460
Access Statistics for this article
More articles in Sociological Methods & Research
Bibliographic data for series maintained by SAGE Publications ().