EconPapers    
Economics at your fingertips  
 

Generative AI Meets Open-Ended Survey Responses: Research Participant Use of AI and Homogenization

Simone Zhang, Janet Xu and Alvero Aj

Sociological Methods & Research, 2025, vol. 54, issue 3, 1197-1242

Abstract: The growing popularity of generative artificial intelligence (AI) tools presents new challenges for data quality in online surveys and experiments. This study examines participants’ use of large language models to answer open-ended survey questions and describes empirical tendencies in human versus large language model (LLM)-generated text responses. In an original survey of research participants recruited from a popular online platform for sourcing social science research subjects, 34 percent reported using LLMs to help them answer open-ended survey questions. Simulations comparing human-written responses from three pre-ChatGPT studies with LLM-generated text reveal that LLM responses are more homogeneous and positive, particularly when they describe social groups in sensitive questions. These homogenization patterns may mask important underlying social variation in attitudes and beliefs among human subjects, raising concerns about data validity. Our findings shed light on the scope and potential consequences of participants’ LLM use in online research.

Keywords: surveys; data quality; large language models; generative AI; human-AI interaction (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/00491241251327130 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:somere:v:54:y:2025:i:3:p:1197-1242

DOI: 10.1177/00491241251327130

Access Statistics for this article

More articles in Sociological Methods & Research
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-07-04
Handle: RePEc:sae:somere:v:54:y:2025:i:3:p:1197-1242