Forecasting coherent volatility breakouts
Alexander Didenko (),
Dubovikov Mikhail and
Poutko Boris
Additional contact information
Dubovikov Mikhail: «INDEX-XX» company
Poutko Boris: Financial university
Вестник Финансового университета, 2015, issue 1 (85), 30-36
Abstract:
The paper develops an algorithm for making long-term (up to three months ahead) predictions of volatility reversals based on long memory properties of financial time series. The approach for computing fractal dimension using sequence of the minimal covers with decreasing scale (proposed in [1]) is used to decompose volatility into two0dynamic components: specific A (t ) and structural Hµ(t ). We introduce two separate models forA (t ) and Hµ(t ), based on different principles and capable of catching long uptrends in volatility. To test statistical significanceof its abilities we introduce several estimators of conditional and unconditional probabilities of reversals in observed and predicted dynamic components of volatility. Our results could be used for forecasting points of market transition to an unstable state.
Keywords: ФОНДОВЫЙ РЫНОК; ЦЕНОВОЙ РИСК; ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ; КРАХИ РЫНКА; ARCH-GARCH МО- ДЕЛЬ; МОДЕЛИ ВОЛАТИЛЬНОСТИ КАК АМПЛИТУДЫ; МНОГОМАСШТАБНАЯ ВОЛАТИЛЬНОСТЬ; РАЗВОРОТЫ ВОЛАТИЛЬНОСТИ; ТЕХНИЧЕСКИЙ АНАЛИЗ (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
http://cyberleninka.ru/article/n/forecasting-coherent-volatility-breakouts
Related works:
Working Paper: Forecasting Coherent Volatility Breakouts (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:scn:031255:15897514
Access Statistics for this article
More articles in Вестник Финансового университета from CyberLeninka, Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «Финансовый университет при Правительстве Российской Федерации» (Финансовый университет)
Bibliographic data for series maintained by CyberLeninka ().