Applying discriminant model to manage credit risk for consumer loans in Vietnamese commercial bank
Nguyen Thuy Duong,
Do Thi Thu Ha and
Nguyen Bich Ngoc
Additional contact information
Nguyen Thuy Duong: Banking Academy of Vietnam
Do Thi Thu Ha: Banking Academy of Vietnam
Nguyen Bich Ngoc: Banking Academy of Vietnam
Review of Business and Economics Studies, 2016, issue 4, 5-16
Abstract:
This study estimates a two-group discriminant function to determine the expected financial health of the consumer credit customers’ of a bank of Vietnam by using five demographic, socio-economic, and loan characteristics of the sample borrowers. The estimated function is significant at one per cent level of significance and the model estimates financial health/group membership with average seventy-three per cent accuracy. Like developed countries, it is expected that use of the estimated discriminant function in the consumer credit decision making will decrease bad debts, will help to set risk based credit pricing for the clients and will make the credit granting faster and more accurate.
Keywords: CONSUMER CREDIT; FINANCIAL DISTRESS; PREDICTION; DEMOGRAPHIC AND SOCIO-ECONOMIC CHARACTERISTICS; TWO-GROUP DISCRIMINANT ANALYSIS; ПОТРЕБИТЕЛЬСКИЙ КРЕДИТ; ФИНАНСОВОЕ НЕБЛАГОПОЛУЧИЕ; ДЕМОГРАФИЧЕСКИЕ И СОЦИАЛЬНО-ЭКОНОМИЧЕСКИЕ ХАРАКТЕРИСТИКИ; БИНАРНЫЙ ДИСКРИМИНАЦИОННЫЙ АНАЛИЗ (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://cyberleninka.ru/article/n/applying-discrimi ... mese-commercial-bank
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:scn:031730:16946467
Access Statistics for this article
More articles in Review of Business and Economics Studies from CyberLeninka, Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «Финансовый университет при Правительстве Российской Федерации» (Финансовый университет)
Bibliographic data for series maintained by CyberLeninka ().