EconPapers    
Economics at your fingertips  
 

Развитие каналов кредитования в условиях перехода к цифровой экономике: моделирование спроса // The Development of Credit Channels in the transition to the Digital Economy: Demand Modelling

O. Lunyakov V., N. Lunyakova A., О. Луняков В. and Н. Лунякова А.
Additional contact information
O. Lunyakov V.: Financial university, Moscow
N. Lunyakova A.: Financial university, Moscow
О. Луняков В.: Финансовый университет, Москва
Н. Лунякова А.: Финансовый университет, Москва

Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, 2018, vol. 22, issue 5, 76-89

Abstract:

The article substantiates and formalizes, in analytical form, the probabilistic model of demand for alternative lending channels, taking into account the common and distinctive characteristics of traditional and new ways to take a credit. To develop this model, the advantages and disadvantages of lending channels have emphasized. The possible exclusive scenarios of the credit market development in conditions of digitalization of the economy have been identifed. Taking into account the trends and scenarios for the development of credit channels, a descriptive model of the institutional structure of the demand and supply of credit has been proposed. It is supposed that traditional lending institutions will be able to adapt the business to innovative technologies, offering customers fundamentally new business models, which will perfectly correspond to the sphere of FinTech. According to the descriptive model, the authors proposed to estimate the market share of lending channels based on the application of utility theory and discrete choice models. It is assumed that potential borrowers make a choice of one / another lending channel from available alternatives, maximizing the utility, under the influence of personal and consumer characteristics of the loan. The authors formalized a multidimensional logit model (nested logit model — NLM) for describing the discrete choice of an alternative lending channel and the corresponding subgroups of lenders (traditional, FinTech and BigTech companies). In this case, the distinctive feature of NLM is a possibility of taking into account the correlations in borrowers’ preferences. The conditions for the application of the developed model have determined. Due to the lack of relevant statistical data as to the volume of lending by the digital channels, the authors modelled changes in the market share of the traditional lending channel based on hypothetical data (characteristics of credit). In the process of modelling, the authors showed nonlinear changes in the demand for an alternative lending channel owing to the existence of individual preferences of potential borrowers. The proposed approach can be used to model and forecast the changes in the credit market conditions

В статье обоснована и формализована в аналитической форме вероятностная модель спроса на альтернативные каналы кредитования с учетом общих и отличительных характеристик традиционных и новых способов предоставления кредита. Для построения указанной модели выделены преимущества и недостатки каналов кредитования; определены возможные не взаимоисключающие сценарии развития кредитного рынка в условиях цифровизации экономики. Принимая во внимание тенденции и сценарии развития каналов кредитования, построена дескриптивная модель институциональной структуры спроса и предложения кредита. В соответствии с предложенной моделью традиционные кредитные институты смогут адаптироваться к инновационным технологиям, предлагая клиентам принципиально новые бизнес-модели, что вполне будет соответствовать сфере FinTech. Согласно дескриптивной модели авторы предлагают оценивать рыночную долю соответствующих каналов кредитования на основе положений теории полезности и вероятностных моделей дискретного выбора. Предполагается, что потенциальные заемщики производят выбор того или иного канала кредитования из имеющихся альтернатив, максимизируя свою полезность, под воздействием личных и потребительских характеристик кредита. Авторы формализовали многомерную логит-модель с группировками (nested logit models — NLM) для описания дискретного выбора альтернативного канала кредитования и соответствующих подгрупп кредиторов (традиционные, FinTech и BigTech-компании), отличительной особенностью которой является учет возможных корреляций в предпочтениях заемщиков. Определены условия прикладного приложения разработанной модели. В силу отсутствия репрезентативных статистических данных относительно объемов кредитования через цифровые каналы, авторы смоделировали изменения в рыночной доле традиционного канала кредитования на основе гипотетических данных, характеризующих потребительские свойства способов получения кредита. В процессе моделирования авторы показали нелинейный характер в изменении спроса на альтернативный канал кредитования в случае имеющихся предпочтений у потенциальных заемщиков. Предложенный научно-методический подход может служить основой для моделирования и прогнозирования конъюнктуры кредитного рынка.

Keywords: digital economy; the credit market; banks; P2P-lending; P2B-lending; FinTech companies; BigTech companies; models of discrete choice; logit model; market share; demand for loan; цифровая экономика; кредитный рынок; банки; P2P-кредитование; P2B-кредитование; FinTechкомпании; BigTech-компании; модели дискретного выбора; логит-модель; рыночная доля; спрос на кредит; онлайнплощадки (search for similar items in EconPapers)
Date: 2018-11-22
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://financetp.fa.ru/jour/article/viewFile/753/516.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:scn:financ:y:2018:i:5:p:76-89

Access Statistics for this article

More articles in Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice from ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation
Bibliographic data for series maintained by Алексей Скалабан ().

 
Page updated 2025-03-20
Handle: RePEc:scn:financ:y:2018:i:5:p:76-89