EconPapers    
Economics at your fingertips  
 

Оптимальный размер банковского резерва: прогноз просроченной кредитной задолженности с использованием копулярных моделей. Optimum volume of bank reserve: forecasting of overdue credit indebtedness using copula models

Казакова К.А. (), Князев А.Г. and Лепёхин О.А.
Additional contact information
Казакова К.А.: Астраханский государственный университет

Мир экономики и управления // Вестник НГУ. Cерия: Cоциально-экономические науки, 2015, vol. 15, issue 4, 59-76

Abstract: В статье рассмотрена возможность применения копулярных моделей семейства RLUF для случая построения совместных распределений рядов задолженности по кредитам с макроэкономическими индикаторами с целью дальнейшего прогнозирования объемов просроченной задолженности и определения оптимальных норм резервных требований на соответствующие потери. В исследовании проводится сравнительный анализ многомерных распределений посредствам оценивания модели RLUF-копулы с такими классическими копулярными моделями, как FGM-копула, копула Франка и копула Гаусса. Для получения оценок параметров моделей использован метод максимального правдоподобия. В случае RLUF-копулы получены байесовские оценки параметров с использованием алгоритма Метрополиса со случайным блужданием. Прогнозирование объемов банковского резерва для всех построенных в исследовании моделей, выполняется посредствам генерирования случайной выборки с помощью алгоритма принятия-отклонения для создания соответствующей выборки из совместного распределения с использованием функции плотности копулярной модели. В результате разыгрывания ста возможных сценариев объемов просроченной задолженности получена 95% граница доверительного интервала для объема просроченной задолженности по кредитам, которая в полной мере может выступать в качестве оптимального объема резервных требований на соответствующие кредитные потери. The article propose to consider the possibility of RLUF-copulas application for the creation of joint distributions of overdue credit indebtedness ranks with macroeconomic indicators for the purpose of indebtedness forecasting and also for the definition of optimum volumes of reserve requirements for the corresponding losses. In this research the comparative analysis of multivariate distributions of RLUF-copula estimation with such classical copulas, as FGM-copula, Frank's copula and Gauss's copula is made. In the article the method of maximum likelihood is used for receiving estimates of model parameters. In case of RLUF-copula Bayesian estimates of parameters are received using the Metropolis algorithm with random volatility. Forecasting of bank reserve volumes for all received models is executed in the form of random sample generation by the means of the algorithm of acceptance-deviation for the creation of the corresponding sample of joint distribution using the copula density function. As the result of playing of hundred possible scenarios of indebtedness volumes is obtained the 95% confidence level for the possible volume of credit indebtedness which can fully act as the optimum volume of reserve requirements for the corresponding credit losses.

Keywords: банковский резерв; кредитный риск; просроченная кредитная задолженность; копулярная модель; прогнозирование; bank reserve; credit risk; overdue credit indebtedness; copula model; forecasting. (search for similar items in EconPapers)
JEL-codes: G17 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.nsu.ru/rs/mw/link/Media:/44648/_2015_4_Kazakova.pdf

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:scn:guhrje:2015_4_06

Access Statistics for this article

More articles in Мир экономики и управления // Вестник НГУ. Cерия: Cоциально-экономические науки from Socionet, Новосибирский государственный университет
Bibliographic data for series maintained by Виталия Маркова ().

 
Page updated 2025-03-20
Handle: RePEc:scn:guhrje:2015_4_06