Putting Robust Statistical Methods into Practice: Poverty Analysis in Tunisia
Mohamed Ayadi (),
Mohamed Salah Matoussi and
Maria-Pia Victoria-Feser ()
Swiss Journal of Economics and Statistics (SJES), 2001, vol. 137, issue III, 463-482
Abstract:
Poverty analysis often results in the computation of poverty indexes based on so-called poverty lines which can be region specific poverty lines. The poverty lines are made of two components, namely the amount of income to satisfy the food and the non food needs. For both components, one needs to estimate quantities such as local prices or the consummers' average basket, and this is often done through a parametric model. The resulting estimates depend on the data at hand and on the type of estimators that are used. Classical estimators (and testing procedures) such as the maximum likelihood estimator (MLE) or the least squares (LS) estimator are extremely sensitive to model deviations such as contamination in the data and hence are said not robust. The resulting analysis can therefore give a picture which is far from reality. Therefore a robust statistical approach to the estimation of the poverty lines is very important especially because these lines will serve to compute poverty indices. The main purpose of this paper is therefore to show how robust statistical procedure can be used in poverty analysis and the different picture on poverty comparisons they can give to the Tunisian case.
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sjes.ch/papers/2001-III-14.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ses:arsjes:2001-iii-14
Access Statistics for this article
Swiss Journal of Economics and Statistics (SJES) is currently edited by Marius Brülhart
More articles in Swiss Journal of Economics and Statistics (SJES) from Swiss Society of Economics and Statistics (SSES) Contact information at EDIRC.
Bibliographic data for series maintained by Kurt Schmidheiny ().