EconPapers    
Economics at your fingertips  
 

Covariance tapering for prediction of large spatial data sets in transformed random fields

Toshihiro Hirano () and Yoshihiro Yajima ()

Annals of the Institute of Statistical Mathematics, 2013, vol. 65, issue 5, 913-939

Abstract: The best linear unbiased predictor (BLUP) is called a kriging predictor and has been widely used to interpolate a spatially correlated random process in scientific areas such as geostatistics. However, if an underlying random field is not Gaussian, the optimality of the BLUP in the mean squared error (MSE) sense is unclear because it is not always identical with the conditional expectation. Moreover, in many cases, data sets in spatial problems are often so large that a kriging predictor is impractically time-consuming. To reduce the computational complexity, covariance tapering has been developed for large spatial data sets. In this paper, we consider covariance tapering in a class of transformed Gaussian models for random fields and show that the BLUP using covariance tapering, the BLUP and the optimal predictor are asymptotically equivalent in the MSE sense if the underlying Gaussian random field has the Matérn covariance function. Copyright The Institute of Statistical Mathematics, Tokyo 2013

Keywords: Covariance tapering; Hermite polynomials; Kriging; Spatial statistics; Spectral density; Transformed random field (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10463-013-0399-8 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:65:y:2013:i:5:p:913-939

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2

DOI: 10.1007/s10463-013-0399-8

Access Statistics for this article

Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi

More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:aistmt:v:65:y:2013:i:5:p:913-939