Qualitative inequalities for squared partial correlations of a Gaussian random vector
Sanjay Chaudhuri ()
Annals of the Institute of Statistical Mathematics, 2014, vol. 66, issue 2, 345-367
Abstract:
We describe various sets of conditional independence relationships, sufficient for qualitatively comparing non-vanishing squared partial correlations of a Gaussian random vector. These sufficient conditions are satisfied by several graphical Markov models. Rules for comparing degree of association among the vertices of such Gaussian graphical models are also developed. We apply these rules to compare conditional dependencies on Gaussian trees. In particular for trees, we show that such dependence can be completely characterised by the length of the paths joining the dependent vertices to each other and to the vertices conditioned on. We also apply our results to postulate rules for model selection for polytree models. Our rules apply to mutual information of Gaussian random vectors as well. Copyright The Institute of Statistical Mathematics, Tokyo 2014
Keywords: Inequalities; Graphical Markov models; Mutual information; Squared partial correlation; Tree models (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10463-013-0417-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:66:y:2014:i:2:p:345-367
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-013-0417-x
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().