EconPapers    
Economics at your fingertips  
 

Bayesian nonparametric modeling for functional analysis of variance

XuanLong Nguyen () and Alan Gelfand ()

Annals of the Institute of Statistical Mathematics, 2014, vol. 66, issue 3, 495-526

Abstract: Analysis of variance is a standard statistical modeling approach for comparing populations. The functional analysis setting envisions that mean functions are associated with the populations, customarily modeled using basis representations, and seeks to compare them. Here, we adopt the modeling approach of functions as realizations of stochastic processes. We extend the Gaussian process version to allow nonparametric specifications using Dirichlet process mixing. Several metrics are introduced for comparison of populations. Then we introduce a hierarchical Dirichlet process model which enables comparison of the population distributions, either directly or through functionals of interest using the foregoing metrics. The modeling is extended to allow us to switch the sampling scheme. There are still population level distributions but now we sample at levels of the functions, obtaining observations from potentially different individuals at different levels. We illustrate with both simulated data and a dataset of temperature versus depth measurements at different locations in the Atlantic Ocean. Copyright The Institute of Statistical Mathematics, Tokyo 2014

Keywords: Dirichlet processes; Gaussian processes; Global and local clustering; Hierarchical models; Random distributions (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10463-013-0436-7 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:66:y:2014:i:3:p:495-526

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2

DOI: 10.1007/s10463-013-0436-7

Access Statistics for this article

Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi

More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:aistmt:v:66:y:2014:i:3:p:495-526