Generalized duration models and optimal estimation using estimating functions
Aerambamoorthy Thavaneswaran (),
Nalini Ravishanker () and
You Liang ()
Annals of the Institute of Statistical Mathematics, 2015, vol. 67, issue 1, 129-156
Abstract:
This article introduces a class of generalized duration models and shows that the autoregressive conditional duration (ACD) models and stochastic conditional duration (SCD) models discussed in the literature are special cases. The martingale estimating functions approach, which provides a convenient framework for deriving optimal inference for nonlinear time series models, is described. It is shown that when the first two conditional moments are functions of the same parameter, and information about higher order conditional moments of the observed duration process become available, combined estimating functions are optimal and are more informative than component estimating functions. The combined estimating functions approach is illustrated on three classes of generalized duration models, viz., multiplicative random coefficient ACD models, random coefficient models with ACD errors, and log-SCD models. Recursive estimation of model parameters based on combined estimating functions provides a mechanism for fast estimation in the general case, and is illustrated using simulated data sets. Copyright The Institute of Statistical Mathematics, Tokyo 2015
Keywords: ACD models; Combined estimating functions; Generalized martingale differences; Quadratic log-SCD models; Random coefficients; Recursive estimates (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10463-013-0442-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:67:y:2015:i:1:p:129-156
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-013-0442-9
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().