EconPapers    
Economics at your fingertips  
 

On the convergence and consistency of the blurring mean-shift process

Ting-Li Chen ()

Annals of the Institute of Statistical Mathematics, 2015, vol. 67, issue 1, 157-176

Abstract: The mean-shift algorithm is a popular algorithm in computer vision and image processing. It can also be cast as a minimum gamma-divergence estimation. In this paper we focus on the “blurring” mean-shift algorithm, which is one version of the mean-shift process that successively blurs the dataset. The analysis of the blurring mean-shift is relatively more complicated compared to the nonblurring version, yet the algorithm convergence and the estimation consistency have not been well studied in the literature. In this paper we prove both the convergence and the consistency of the blurring mean-shift. We also perform simulation studies to compare the efficiency of the blurring and the nonblurring versions of the mean-shift algorithms. Our results show that the blurring mean-shift has more efficiency. Copyright The Institute of Statistical Mathematics, Tokyo 2015

Keywords: Mean-shift; Convergence; Consistency; Clustering; Super robustness; $$\upgamma $$ γ -Divergence (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10463-013-0443-8 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:67:y:2015:i:1:p:157-176

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2

DOI: 10.1007/s10463-013-0443-8

Access Statistics for this article

Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi

More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:aistmt:v:67:y:2015:i:1:p:157-176