Empirical identifiability in finite mixture models
Daeyoung Kim () and
Bruce Lindsay
Annals of the Institute of Statistical Mathematics, 2015, vol. 67, issue 4, 745-772
Abstract:
Although the parameters in a finite mixture model are unidentifiable, there is a form of local identifiability guaranteeing the existence of the identifiable parameter regions. To verify its existence, practitioners use the Fisher information on the estimated parameters. However, there exist model/data situations where local identifiability based on Fisher information does not correspond to that based on the likelihood. In this paper, we propose a method to empirically measure degree of local identifiability on the estimated parameters, empirical identifiability, based on one’s ability to construct an identifiable likelihood set. From a detailed topological study of the likelihood region, we show that for any given data set and mixture model, there typically exists limited range of confidence levels where the likelihood region has a natural partition into identifiable subsets. At confidence levels that are too high, there is no natural way to use the likelihood to resolve the identifiability problem. Copyright The Institute of Statistical Mathematics, Tokyo 2015
Keywords: Asymptotic identifiability; Finite mixture model; Local identifiability; Likelihood topology; Nonidentifiability (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10463-014-0474-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:67:y:2015:i:4:p:745-772
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-014-0474-9
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().