Intrinsically weighted means and non-ergodic marked point processes
Alexander Malinowski (),
Martin Schlather () and
Zhengjun Zhang ()
Annals of the Institute of Statistical Mathematics, 2016, vol. 68, issue 1, 24 pages
Abstract:
Mean marks form a versatile toolbox in the analysis of marked point processes (MPPs). For ergodic processes, their definition is straightforward and practical application is well established. In the stationary non-ergodic case, though, different definitions of mark averages are possible and might be practically relevant. In this paper, the classical definition of mean marks is compared to a set of new characteristics for non-ergodic MPPs, which stand out due to the weighting of ergodicity classes. Another weighting can be introduced on the single-point level via weights given by the marks themselves. These intrinsically given weights and the weighting of ergodicity classes are closely related to each other meaning that for suitable choices of weights, a mean mark characteristic can be expressed in either way. Estimators for the different definitions of mean marks are discussed and their consistency and asymptotic normality are shown under certain conditions. Copyright The Institute of Statistical Mathematics, Tokyo 2016
Keywords: Ergodic decomposition; Hierarchical modeling; Mark-location interaction; Moment measure; Non-ergodicity; Weighted mark mean (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10463-014-0485-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:68:y:2016:i:1:p:1-24
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-014-0485-6
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().