On confidence bands for multivariate nonparametric regression
Katharina Proksch ()
Annals of the Institute of Statistical Mathematics, 2016, vol. 68, issue 1, 209-236
Abstract:
In a multivariate nonparametric regression problem with fixed, deterministic design asymptotic, uniform confidence bands for the regression function are constructed. The construction of the bands is based on the asymptotic distribution of the maximal deviation between a suitable nonparametric estimator and the true regression function which is derived by multivariate strong approximation methods and a limit theorem for the supremum of a stationary Gaussian field over an increasing system of sets. The results are derived for a general class of estimators which includes local polynomial estimators as a special case. The finite sample properties of the proposed asymptotic bands are investigated by means of a small simulation study. Copyright The Institute of Statistical Mathematics, Tokyo 2016
Keywords: Confidence bands; Rates of convergence; Multivariate regression; Nonparametric Regression; Uniform convergence (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10463-014-0494-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:68:y:2016:i:1:p:209-236
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-014-0494-5
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().