A weighted estimator of conditional hazard rate with left-truncated and dependent data
Han-Ying Liang () and
Elias Ould Saïd ()
Additional contact information
Han-Ying Liang: Tongji University
Elias Ould Saïd: Univ. Littoral Côte d’Opale, LMPA
Annals of the Institute of Statistical Mathematics, 2018, vol. 70, issue 1, No 7, 155-189
Abstract:
Abstract Based on empirical likelihood method, we construct new weighted estimators of conditional density and conditional survival functions when the interest random variable is subject to random left-truncation; further, we define a plug-in weighted estimator of the conditional hazard rate. Under strong mixing assumptions, we derive asymptotic normality of the proposed estimators which permit to built a confidence interval for the conditional hazard rate. The finite sample behavior of the estimators is investigated via simulations too.
Keywords: Asymptotic normality; Conditional hazard rate; Strong mixing; Truncated data; Weighted estimator (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10463-016-0587-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:70:y:2018:i:1:d:10.1007_s10463-016-0587-4
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-016-0587-4
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().