A more powerful test identifying the change in mean of functional data
Buddhananda Banerjee () and
Satyaki Mazumder ()
Additional contact information
Buddhananda Banerjee: Indian Institute of Technology Kharagpur
Satyaki Mazumder: Indian Institute of Science Education and Research Kolkata
Annals of the Institute of Statistical Mathematics, 2018, vol. 70, issue 3, No 8, 715 pages
Abstract:
Abstract An existence of change point in a sequence of temporally ordered functional data demands more attention in its statistical analysis to make a better use of it. Introducing a dynamic estimator of covariance kernel, we propose a new methodology for testing an existence of change in the mean of temporally ordered functional data. Though a similar estimator is used for the covariance in finite dimension, we introduce it for the independent and weakly dependent functional data in this context for the first time. From this viewpoint, the proposed estimator of covariance kernel is more natural one when the sequence of functional data may possess a change point. We prove that the proposed test statistics are asymptotically pivotal under the null hypothesis and consistent under the alternative. It is shown that our testing procedures outperform the existing ones in terms of power and provide satisfactory results when applied to real data.
Keywords: Change point detection; Functional data analysis; Covariance kernel (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10463-017-0606-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:70:y:2018:i:3:d:10.1007_s10463-017-0606-0
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-017-0606-0
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().