Bootstrapping the Kaplan–Meier estimator on the whole line
Dennis Dobler ()
Additional contact information
Dennis Dobler: Ulm University
Annals of the Institute of Statistical Mathematics, 2019, vol. 71, issue 1, No 9, 213-246
Abstract:
Abstract This article is concerned with proving the consistency of Efron’s bootstrap for the Kaplan–Meier estimator on the whole support of a survival function. While previous works address the asymptotic Gaussianity of the Kaplan–Meier estimator without restricting time, we enable the construction of bootstrap-based time-simultaneous confidence bands for the whole survival function. Other practical applications include bootstrap-based confidence bands for the mean residual lifetime function or the Lorenz curve as well as confidence intervals for the Gini index. Theoretical results are complemented with a simulation study and a real data example which result in statistical recommendations.
Keywords: Counting process; Right censoring; Resampling; Efron’s bootstrap; Mean residual lifetime; Lorenz curve; Gini index (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10463-017-0634-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:71:y:2019:i:1:d:10.1007_s10463-017-0634-9
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-017-0634-9
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().