Error density estimation in high-dimensional sparse linear model
Feng Zou () and
Hengjian Cui ()
Additional contact information
Feng Zou: Capital Normal University
Hengjian Cui: Capital Normal University
Annals of the Institute of Statistical Mathematics, 2020, vol. 72, issue 2, No 4, 427-449
Abstract:
Abstract This paper is concerned with the error density estimation in high-dimensional sparse linear model, where the number of variables may be larger than the sample size. An improved two-stage refitted cross-validation procedure by random splitting technique is used to obtain the residuals of the model, and then traditional kernel density method is applied to estimate the error density. Under suitable sparse conditions, the large sample properties of the estimator including the consistency and asymptotic normality, as well as the law of the iterated logarithm are obtained. Especially, we gave the relationship between the sparsity and the convergence rate of the kernel density estimator. The simulation results show that our error density estimator has a good performance. A real data example is presented to illustrate our methods.
Keywords: High-dimensional sparse linear model; Kernel density estimation; Refitted cross-validation method; Asymptotic properties; Law of the iterated logarithm (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10463-018-0699-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:72:y:2020:i:2:d:10.1007_s10463-018-0699-0
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-018-0699-0
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().