Distributions of pattern statistics in sparse Markov models
Donald E. K. Martin ()
Additional contact information
Donald E. K. Martin: North Carolina State University
Annals of the Institute of Statistical Mathematics, 2020, vol. 72, issue 4, No 1, 895-913
Abstract:
Abstract Markov models provide a good approximation to probabilities associated with many categorical time series, and thus they are applied extensively. However, a major drawback associated with them is that the number of model parameters grows exponentially in the order of the model, and thus only very low-order models are considered in applications. Another drawback is lack of flexibility, in that Markov models give relatively few choices for the number of model parameters. Sparse Markov models are Markov models with conditioning histories that are grouped into classes such that the conditional probability distribution for members of each class is constant. The model gives a better handling of the trade-off between bias associated with having too few model parameters and variance from having too many. In this paper, methodology for efficient computation of pattern distributions through Markov chains with minimal state spaces is extended to the sparse Markov framework.
Keywords: Auxiliary Markov chain; Pattern distribution; Sparse Markov model; Variable length Markov chain (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10463-019-00714-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:72:y:2020:i:4:d:10.1007_s10463-019-00714-6
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-019-00714-6
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().