A high-dimensional M-estimator framework for bi-level variable selection
Bin Luo () and
Xiaoli Gao
Additional contact information
Bin Luo: Duke University
Xiaoli Gao: The University of North Carolina at Greensboro
Annals of the Institute of Statistical Mathematics, 2022, vol. 74, issue 3, No 8, 559-579
Abstract:
Abstract In high-dimensional data analysis, bi-level sparsity is often assumed when covariates function group-wisely and sparsity can appear either at the group level or within certain groups. In such cases, an ideal model should be able to encourage the bi-level variable selection consistently. Bi-level variable selection has become even more challenging when data have heavy-tailed distribution or outliers exist in random errors and covariates. In this paper, we study a framework of high-dimensional M-estimation for bi-level variable selection. This framework encourages bi-level sparsity through a computationally efficient two-stage procedure. In theory, we provide sufficient conditions under which our two-stage penalized M-estimator possesses simultaneous local estimation consistency and the bi-level variable selection consistency if certain non-convex penalty functions are used at the group level. Both our simulation studies and real data analysis demonstrate satisfactory finite sample performance of the proposed estimators under different irregular settings.
Keywords: Bi-level variable selection; Estimation consistency; High dimensionality; M-estimation; Non-convexity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10463-021-00809-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:74:y:2022:i:3:d:10.1007_s10463-021-00809-z
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-021-00809-z
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().