EconPapers    
Economics at your fingertips  
 

Nonparametric inference for additive models estimated via simplified smooth backfitting

Suneel Babu Chatla ()
Additional contact information
Suneel Babu Chatla: The University of Texas at El Paso

Annals of the Institute of Statistical Mathematics, 2023, vol. 75, issue 1, No 4, 97 pages

Abstract: Abstract We investigate hypothesis testing in nonparametric additive models estimated using simplified smooth backfitting (Huang and Yu, Journal of Computational and Graphical Statistics, 28(2), 386–400, 2019). Simplified smooth backfitting achieves oracle properties under regularity conditions and provides closed-form expressions of the estimators that are useful for deriving asymptotic properties. We develop a generalized likelihood ratio (GLR) (Fan, Zhang and Zhang, Annals of statistics, 29(1),153–193, 2001) and a loss function (LF) (Hong and Lee, Annals of Statistics, 41(3), 1166–1203, 2013)-based testing framework for inference. Under the null hypothesis, both the GLR and LF tests have asymptotically rescaled chi-squared distributions, and both exhibit the Wilks phenomenon, which means the scaling constants and degrees of freedom are independent of nuisance parameters. These tests are asymptotically optimal in terms of rates of convergence for nonparametric hypothesis testing. Additionally, the bandwidths that are well suited for model estimation may be useful for testing. We show that in additive models, the LF test is asymptotically more powerful than the GLR test. We use simulations to demonstrate the Wilks phenomenon and the power of these proposed GLR and LF tests, and a real example to illustrate their usefulness.

Keywords: Generalized likelihood ratio; Loss function; Hypothesis testing; Local polynomial regression; Wilks phenomenon (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10463-022-00840-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:75:y:2023:i:1:d:10.1007_s10463-022-00840-8

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2

DOI: 10.1007/s10463-022-00840-8

Access Statistics for this article

Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi

More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:aistmt:v:75:y:2023:i:1:d:10.1007_s10463-022-00840-8