Statistical inference using regularized M-estimation in the reproducing kernel Hilbert space for handling missing data
Hengfang Wang and
Jae Kwang Kim ()
Additional contact information
Hengfang Wang: Fujian Normal University
Jae Kwang Kim: Iowa State University
Annals of the Institute of Statistical Mathematics, 2023, vol. 75, issue 6, No 2, 929 pages
Abstract:
Abstract Imputation is a popular technique for handling missing data. We address a nonparametric imputation using the regularized M-estimation techniques in the reproducing kernel Hilbert space. Specifically, we first use kernel ridge regression to develop imputation for handling item nonresponse. Although this nonparametric approach is potentially promising for imputation, its statistical properties are not investigated in the literature. Under some conditions on the order of the tuning parameter, we first establish the root-n consistency of the kernel ridge regression imputation estimator and show that it achieves the lower bound of the semiparametric asymptotic variance. A nonparametric propensity score estimator using the reproducing kernel Hilbert space is also developed by the linear expression of the projection estimator. We show that the resulting propensity score estimator is asymptotically equivalent to the kernel ridge regression imputation estimator. Results from a limited simulation study are also presented to confirm our theory. The proposed method is applied to analyze air pollution data measured in Beijing, China.
Keywords: Imputation; Kernel ridge regression; Missing at random; Propensity score (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10463-023-00872-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:75:y:2023:i:6:d:10.1007_s10463-023-00872-8
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-023-00872-8
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().