Global Convergence of Conjugate Gradient Methods without Line Search
Jie Sun () and
Jiapu Zhang
Annals of Operations Research, 2001, vol. 103, issue 1, 173 pages
Abstract:
Global convergence results are derived for well-known conjugate gradient methods in which the line search step is replaced by a step whose length is determined by a formula. The results include the following cases: (1) The Fletcher–Reeves method, the Hestenes–Stiefel method, and the Dai–Yuan method applied to a strongly convex LC 1 objective function; (2) The Polak–Ribière method and the Conjugate Descent method applied to a general, not necessarily convex, LC 1 objective function. Copyright Kluwer Academic Publishers 2001
Keywords: conjugate gradient methods; convergence of algorithms; line search (search for similar items in EconPapers)
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1023/A:1012903105391 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:103:y:2001:i:1:p:161-173:10.1023/a:1012903105391
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1023/A:1012903105391
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().