An Equivalence Result for Single Facility Planar Location Problems with Rectilinear Distance and Barriers
P.M. Dearing and
R. Segars
Annals of Operations Research, 2002, vol. 111, issue 1, 89-110
Abstract:
This paper considers planar location problems with rectilinear distance and barriers, where the objective function is any convex, nondecreasing function of distance. Such problems have a non-convex feasible region and a non-convex objective function. A modification of the barriers is developed based on properties of the rectilinear distance. It is shown that the original problem with barriers is equivalent to the problem with modified barriers. A particular modification is given that reduces the feasible region and permits its partitioning into convex subsets on which the objective function is convex. A solution algorithm based on the partitioning is the subject of a companion paper. Copyright Kluwer Academic Publishers 2002
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1023/A:1020945501716 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:111:y:2002:i:1:p:89-110:10.1023/a:1020945501716
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1023/A:1020945501716
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().