Maximum Entropy Reconstruction Methods in Electron Paramagnetic Resonance Imaging
Calvin Johnson,
Delia McGarry,
John Cook (),
Nallathamby Devasahayam,
James Mitchell,
Sankaran Subramanian and
Murali Krishna
Annals of Operations Research, 2003, vol. 119, issue 1, 118 pages
Abstract:
Electron Paramagnetic Resonance (EPR) is a spectroscopic technique that detects and characterizes molecules with unpaired electrons (i.e., free radicals). Unlike the closely related nuclear magnetic resonance (NMR) spectroscopy, EPR is still under development as an imaging modality. Athough a number of physical factors have hindered its development, EPR's potential is quite promising in a number of important application areas, including in vivo oximetry. EPR images are generally reconstructed using a tomographic imaging technique, of which filtered backprojection (FBP) is the most commonly used. We apply two iterative methods for maximum-entropy image reconstruction in EPR. The first is the multiplicative algebraic reconstruction technique (MART), a well-known row-action method. We propose a second method, known as LSEnt (least-squares entropy), that maximizes entropy and performs regularization by maintaining a desired distance from the measurements. LSEnt is in part motivated by the barrier method of interior-point programming. We present studies in which images of two physical phantoms, reconstructed using FBP, MART, and LSEnt, are compared. The images reconstructed using MART and LSEnt have lower variance, better contrast recovery, subjectively better resolution, and reduced streaking artifact than those reconstructed using FBP. These results suggest that maximum-entropy reconstruction methods (particularly the more flexible LSEnt) may be critical in overcoming some of the physical challenges of EPR imaging. Copyright Kluwer Academic Publishers 2003
Keywords: tomographic image reconstruction; electron paramagnetic resonance; maximum entropy; nonlinear optimization (search for similar items in EconPapers)
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1023/A:1022978322046 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:119:y:2003:i:1:p:101-118:10.1023/a:1022978322046
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1023/A:1022978322046
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().