Non Delayed Relax-and-Cut Algorithms
Abilio Lucena ()
Annals of Operations Research, 2005, vol. 140, issue 1, 375-410
Abstract:
Attempts to allow exponentially many inequalities to be candidates to Lagrangian dualization date from the early 1980's. In this paper, the term Relax-and-Cut, introduced elsewhere, is used to denote the whole class of Lagrangian Relaxation algorithms where Lagrangian bounds are attempted to be improved by dynamically strengthening relaxations with the introduction of valid constraints. An algorithm in that class, denoted here Non Delayed Relax-and-Cut, is described in detail, together with a general framework to obtain feasible integral solutions. Specific implementations of NDRC are presented for the Steiner Tree Problem and for a Cardinality Constrained Set Partitioning Problem. Copyright Springer Science + Business Media, Inc. 2005
Keywords: Lagrangian relaxation; relax-and-cut; valid constraints; dual bound strengthening (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-005-3977-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:140:y:2005:i:1:p:375-410:10.1007/s10479-005-3977-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-005-3977-1
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().