Some insights into the solution algorithms for SLP problems
Peter Kall and
János Mayer ()
Annals of Operations Research, 2006, vol. 142, issue 1, 147-164
Abstract:
We consider classes of stochastic linear programming problems which can be efficiently solved by deterministic algorithms. For two–stage recourse problems we identify two such classes. The first one consists of problems where the number of stochastically independent random variables is relatively low; the second class is the class of simple recourse problems. The proposed deterministic algorithm is successive discrete approximation. We also illustrate the impact of required accuracy on the efficiency of this algorithm. For jointly chance constrained problems with a random right–hand–side and multivariate normal distribution we demonstrate the increase in efficiency when lower accuracy is required, for a central cutting plane method. We support our argumentation and findings with computational results. Copyright Springer Science + Business Media, Inc. 2006
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-006-6166-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:142:y:2006:i:1:p:147-164:10.1007/s10479-006-6166-y
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-006-6166-y
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().