Approximation of the steepest descent direction for the O-D matrix adjustment problem
Esteve Codina () and
Lídia Montero
Annals of Operations Research, 2006, vol. 144, issue 1, 329-362
Abstract:
In this paper, a method to approximate the directions of Clarke's generalized gradient of the upper level function for the demand adjustment problem on traffic networks is presented. Its consistency is analyzed in detail. The theoretical background on which this method relies is the known property of proximal subgradients of approximating subgradients of proximal bounded and lower semicountinuous functions using the Moreau envelopes. A double penalty approach is employed to approximate the proximal subgradients provided by these envelopes. An algorithm based on partial linearization is used to solve the resulting nonconvex problem that approximates the Moreau envelopes, and a method to verify the accuracy of the approximation to the steepest descent direction at points of differentiability is developed, so it may be used as a suitable stopping criterion. Finally, a set of experiments with test problems are presented, illustrating the approximation of the solutions to a steepest descent direction evaluated numerically. Copyright Springer Science+Business Media, LLC 2006
Keywords: Bilevel programming; Demand adjustment; Regularization; Partial linearization algorithm; Traffic assignment (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-006-0007-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:144:y:2006:i:1:p:329-362:10.1007/s10479-006-0007-x
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-006-0007-x
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().