Reformulation of the support set selection problem in the logical analysis of data
Renato Bruni ()
Annals of Operations Research, 2007, vol. 150, issue 1, 79-92
Abstract:
The paper is concerned with the problem of binary classification of data records, given an already classified training set of records. Among the various approaches to the problem, the methodology of the logical analysis of data (LAD) is considered. Such approach is based on discrete mathematics, with special emphasis on Boolean functions. With respect to the standard LAD procedure, enhancements based on probability considerations are presented. In particular, the problem of the selection of the optimal support set is formulated as a weighted set covering problem. Testable statistical hypothesis are used. Accuracy of the modified LAD procedure is compared to that of the standard LAD procedure on datasets of the UCI repository. Encouraging results are obtained and discussed. Copyright Springer Science+Business Media, LLC 2007
Keywords: Classification; Data mining; Logical analysis of data; Massive data sets; Set covering (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-006-0159-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:150:y:2007:i:1:p:79-92:10.1007/s10479-006-0159-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-006-0159-8
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().