Estimating parameters in diffusion processes using an approximate maximum likelihood approach
Erik Lindström ()
Annals of Operations Research, 2007, vol. 151, issue 1, 269-288
Abstract:
We present an approximate Maximum Likelihood estimator for univariate Itô stochastic differential equations driven by Brownian motion, based on numerical calculation of the likelihood function. The transition probability density of a stochastic differential equation is given by the Kolmogorov forward equation, known as the Fokker-Planck equation. This partial differential equation can only be solved analytically for a limited number of models, which is the reason for applying numerical methods based on higher order finite differences. The approximate likelihood converges to the true likelihood, both theoretically and in our simulations, implying that the estimator has many nice properties. The estimator is evaluated on simulated data from the Cox-Ingersoll-Ross model and a non-linear extension of the Chan-Karolyi-Longstaff-Sanders model. The estimates are similar to the Maximum Likelihood estimates when these can be calculated and converge to the true Maximum Likelihood estimates as the accuracy of the numerical scheme is increased. The estimator is also compared to two benchmarks; a simulation-based estimator and a Crank-Nicholson scheme applied to the Fokker-Planck equation, and the proposed estimator is still competitive. Copyright Springer Science+Business Media, LLC 2007
Keywords: Approximate likelihood function; Durham-Gallant estimator; Crank-Nicholson scheme; Cox-Ingersoll-Ross model; Non-linear CKLS model (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-006-0126-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:151:y:2007:i:1:p:269-288:10.1007/s10479-006-0126-4
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-006-0126-4
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().