Higher-order optimality conditions for strict local minima
Bienvenido Jiménez () and
Vicente Novo ()
Annals of Operations Research, 2008, vol. 157, issue 1, 183-192
Abstract:
In this work, we study a nonsmooth optimization problem with generalized inequality constraints and an arbitrary set constraint. We present necessary conditions for a point to be a strict local minimizer of order k in terms of higher-order (upper and lower) Studniarski derivatives and the contingent cone to the constraint set. In the same line, when the initial space is finite dimensional, we develop sufficient optimality conditions. We also provide sufficient conditions for minimizers of order k using the lower Studniarski derivative of the Lagrangian function. Particular interest is put for minimizers of order two, using now a special second order derivative which leads to the Fréchet derivative in the differentiable case. Copyright Springer Science+Business Media, LLC 2008
Keywords: Optimality conditions; Strict minimizer of higher order (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-007-0197-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:157:y:2008:i:1:p:183-192:10.1007/s10479-007-0197-x
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-007-0197-x
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().