On the geometry, preemptions and complexity of multiprocessor and shop scheduling
Evgeny Shchepin () and
Nodari Vakhania ()
Annals of Operations Research, 2008, vol. 159, issue 1, 183-213
Abstract:
In this paper we study multiprocessor and open shop scheduling problems from several points of view. We explore a tight dependence of the polynomial solvability/intractability on the number of allowed preemptions. For an exhaustive interrelation, we address the geometry of problems by means of a novel graphical representation. We use the so-called preemption and machine-dependency graphs for preemptive multiprocessor and shop scheduling problems, respectively. In a natural manner, we call a scheduling problem acyclic if the corresponding graph is acyclic. There is a substantial interrelation between the structure of these graphs and the complexity of the problems. Acyclic scheduling problems are quite restrictive; at the same time, many of them still remain NP-hard. We believe that an exhaustive study of acyclic scheduling problems can lead to a better understanding and give a better insight of general scheduling problems. We show that not only acyclic but also a special non-acyclic version of periodic job-shop scheduling can be solved in polynomial (linear) time. In that version, the corresponding machine dependency graph is allowed to have a special type of the so-called parti-colored cycles. We show that trivial extensions of this problem become NP-hard. Then we suggest a linear-time algorithm for the acyclic open-shop problem in which at most m−2 preemptions are allowed, where m is the number of machines. This result is also tight, as we show that if we allow one less preemption, then this strongly restricted version of the classical open-shop scheduling problem becomes NP-hard. In general, we show that very simple acyclic shop scheduling problems are NP-hard. As an example, any flow-shop problem with a single job with three operations and the rest of the jobs with a single non-zero length operation is NP-hard. We suggest linear-time approximation algorithm with the worst-case performance of $\|\mathcal{M}\|+2\|\mathcal{J}\|$ ( $\|\mathcal{M}\|+\|\mathcal{J}\|$ , respectively) for acyclic job-shop (open-shop, respectively), where $\|\mathcal{J}\|$ (‖ℳ‖, respectively) is the maximal job length (machine load, respectively). We show that no algorithm for scheduling acyclic job-shop can guarantee a better worst-case performance than $\|\mathcal{M}\|+\|\mathcal{J}\|$ . We consider two special cases of the acyclic job-shop with the so-called short jobs and short operations (restricting the maximal job and operation length) and solve them optimally in linear time. We show that scheduling m identical processors with at most m−2 preemptions is NP-hard, whereas a venerable early linear-time algorithm by McNaughton yields m−1 preemptions. Another multiprocessor scheduling problem we consider is that of scheduling m unrelated processors with an additional restriction that the processing time of any job on any machine is no more than the optimal schedule makespan C max * . We show that the (2m−3)-preemptive version of this problem is polynomially solvable, whereas the (2m−4)-preemptive version becomes NP-hard. For general unrelated processors, we guarantee near-optimal (2m−3)-preemptive schedules. The makespan of such a schedule is no more than either the corresponding non-preemptive schedule makespan or max {C max * ,p max }, where C max * is the optimal (preemptive) schedule makespan and p max is the maximal job processing time. Copyright Springer Science+Business Media, LLC 2008
Keywords: Algorithm; Shop scheduling; Multiprocessor scheduling; Time complexity; Preemption (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-007-0266-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:159:y:2008:i:1:p:183-213:10.1007/s10479-007-0266-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-007-0266-1
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().