QBD Markov chains on binomial-like trees and its application to multilevel feedback queues
B. Houdt (),
J. Velthoven and
C. Blondia
Annals of Operations Research, 2008, vol. 160, issue 1, 3-18
Abstract:
A matrix analytic paradigm, termed Quasi-Birth-Death Markov chains on binomial-like trees, is introduced and a quadratically converging algorithm to assess its steady state is presented. In a bivariate Markov chain {(X t ,N t ),t≥0}, the values of the variable X t are nodes of a binomial-like tree of order d, where the ith child has i children of its own. We demonstrate that it suffices to solve d quadratic matrix equations to yield the steady state vector, the form of which is matrix geometric. We apply this framework to analyze the multilevel feedback scheduling discipline, which forms an essential part in contemporary operating systems. Copyright Springer Science+Business Media, LLC 2008
Keywords: QBD Markov chains; Tree-like processes; Matrix-analytic methods; Multilevel feedback queues (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-007-0288-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:160:y:2008:i:1:p:3-18:10.1007/s10479-007-0288-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-007-0288-8
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().