A hybrid algorithm for nonlinear minimax problems
Fusheng Wang () and
Kecun Zhang
Annals of Operations Research, 2008, vol. 164, issue 1, 167-191
Abstract:
In this paper, a hybrid algorithm for solving finite minimax problem is presented. In the algorithm, we combine the trust-region methods with the line-search methods and curve-search methods. By means of this hybrid technique, the algorithm, according to the specific situation at each iteration, can adaptively performs the trust-region step, line-search step or curve-search step, so as to avoid possibly solving the trust-region subproblems many times, and make better use of the advantages of different methods. Moreover, we use second-order correction step to circumvent the difficulties of the Maratos effect occurred in the nonsmooth optimization. Under mild conditions, we prove that the new algorithm is of global convergence and locally superlinear convergence. The preliminary experiments show that the new algorithm performs efficiently. Copyright Springer Science+Business Media, LLC 2008
Keywords: Trust-region methods; Hybrid technique; Second order correction; Finite minimax problem (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-008-0401-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:164:y:2008:i:1:p:167-191:10.1007/s10479-008-0401-7
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-008-0401-7
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().