An approach to the valuation and decision of ERP investment projects based on real options
F. Wu (),
H. Li (),
L. Chu (),
D. Sculli () and
K. Gao ()
Annals of Operations Research, 2009, vol. 168, issue 1, 203 pages
Abstract:
The risks and uncertainties inherent in most enterprise resources planning (ERP) investment projects are vast. Decision making in multistage ERP projects investment is also complex, due mainly to the uncertainties involved and the various managerial and/or physical constraints to be enforced. This paper tackles the problem using a real-option analysis framework, and applies multistage stochastic integer programming in formulating an analytical model whose solution will yield optimum or near-optimum investment decisions for ERP projects. Traditionally, such decision problems were tackled using lattice simulation or finite difference methods to compute the value of simple real options. However, these approaches are incapable of dealing with the more complex compound real options, and their use is thus limited to simple real-option analysis. Multistage stochastic integer programming is particularly suitable for sequential decision making under uncertainty, and is used in this paper and to find near-optimal strategies for complex decision problems. Compared with the traditional approaches, multistage stochastic integer programming is a much more powerful tool in evaluating such compound real options. This paper describes the proposed real-option analysis model and uses an example case study to demonstrate the effectiveness of the proposed approach. Copyright Springer Science+Business Media, LLC 2009
Keywords: Enterprise resources planning (ERP); Real option; Uncertainty; Mixed-integer programming; Decision-making (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-008-0365-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:168:y:2009:i:1:p:181-203:10.1007/s10479-008-0365-7
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-008-0365-7
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().