EconPapers    
Economics at your fingertips  
 

Online stochastic optimization under time constraints

Pascal Hentenryck (), Russell Bent and Eli Upfal

Annals of Operations Research, 2010, vol. 177, issue 1, 183 pages

Abstract: This paper considers online stochastic combinatorial optimization problems where uncertainties, i.e., which requests come and when, are characterized by distributions that can be sampled and where time constraints severely limit the number of offline optimizations which can be performed at decision time and/or in between decisions. It proposes online stochastic algorithms that combine the frameworks of online and stochastic optimization. Online stochastic algorithms differ from traditional a priori methods such as stochastic programming and Markov Decision Processes by focusing on the instance data that is revealed over time. The paper proposes three main algorithms: expectation E, consensus C, and regret R. They all make online decisions by approximating, for each decision, the solution to a multi-stage stochastic program using an exterior sampling method and a polynomial number of samples. The algorithms were evaluated experimentally and theoretically. The experimental results were obtained on three applications of different nature: packet scheduling, multiple vehicle routing with time windows, and multiple vehicle dispatching. The theoretical results show that, under assumptions which seem to hold on these, and other, applications, algorithm E has an expected constant loss compared to the offline optimal solution. Algorithm R reduces the number of optimizations by a factor |R|, where R is the number of requests, and has an expected ρ(1+o(1)) loss when the regret gives a ρ-approximation to the offline problem. Copyright Springer Science+Business Media, LLC 2010

Keywords: Stochastic optimization; Online algorithms; Dynamic vehicle routing (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-009-0605-5 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:177:y:2010:i:1:p:151-183:10.1007/s10479-009-0605-5

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-009-0605-5

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:177:y:2010:i:1:p:151-183:10.1007/s10479-009-0605-5