Re-solving stochastic programming models for airline revenue management
Lijian Chen () and
Tito Homem- de-Mello ()
Annals of Operations Research, 2010, vol. 177, issue 1, 114 pages
Abstract:
We study some mathematical programming formulations for the origin-destination model in airline revenue management. In particular, we focus on the traditional probabilistic model proposed in the literature. The approach we study consists of solving a sequence of two-stage stochastic programs with simple recourse, which can be viewed as an approximation to a multi-stage stochastic programming formulation to the seat allocation problem. Our theoretical results show that the proposed approximation is robust, in the sense that solving more successive two-stage programs can never worsen the expected revenue obtained with the corresponding allocation policy. Although intuitive, such a property is known not to hold for the traditional deterministic linear programming model found in the literature. We also show that this property does not hold for some bid-price policies. In addition, we propose a heuristic method to choose the re-solving points, rather than re-solving at equally-spaced times as customary. Numerical results are presented to illustrate the effectiveness of the proposed approach. Copyright Springer Science+Business Media, LLC 2010
Keywords: Stochastic programming; Multi-stage models; Revenue management (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-009-0603-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:177:y:2010:i:1:p:91-114:10.1007/s10479-009-0603-7
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-009-0603-7
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().