Approximate performance analysis of CONWIP disciplines in unreliable non homogeneous transfer lines
Fatima Mhada () and
Roland Malhamé ()
Annals of Operations Research, 2011, vol. 182, issue 1, 213-233
Abstract:
For a given choice of the maximum allowable total storage parameter, the performance of constant work-in-process (CONWIP) disciplines in unreliable transfer lines subjected to a constant rate of demand for parts, is characterized via a tractable approximate mathematical model. For a (n−1) machines CONWIP loop, the model consists of n multi-state machine single buffer building blocks, separately solvable once a total of (n−1) 2 unknown constants shared by the building blocks are initialized. The multi-state machine is common to all building blocks, and its n discrete states approximate the joint operating state of the machines within the CONWIP loop; each of the first (n−1) blocks maps into a single internal buffer dynamics, while the nth building block characterizes total work-in-process (wip) dynamics. The blocks correspond to linear n component state equations with boundary conditions. The unknown (shared) constants in the block dynamics are initialized and calculated by means of successive iterations. The performance estimates of interest—mean total wip, and probability of parts availability at the end buffer in the loop—are obtained from the model and validated against the results of Monte Carlo simulations. Copyright Springer Science+Business Media, LLC 2011
Keywords: CONWIP; Decomposition/aggregation methods; Forward Kolmogorov equations (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-010-0722-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:182:y:2011:i:1:p:213-233:10.1007/s10479-010-0722-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-010-0722-1
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().