Relations between threshold and k-interval Boolean functions
David Kronus ()
Annals of Operations Research, 2011, vol. 188, issue 1, 263-278
Abstract:
Every k-interval Boolean function f can be represented by at most k intervals of integers such that vector x is a truepoint of f if and only if the integer represented by x belongs to one of these k (disjoint) intervals. Since the correspondence of Boolean vectors and integers depends on the order of bits an interval representation is also specified with respect to an order of variables of the represented function. Interval representation can be useful as an efficient representation for special classes of Boolean functions which can be represented by a small number of intervals. In this paper we study inclusion relations between the classes of threshold and k-interval Boolean functions. We show that positive 2-interval functions constitute a (proper) subclass of positive threshold functions and that such inclusion does not hold for any k>2. We also prove that threshold functions do not constitute a subclass of k-interval functions, for any k. Copyright Springer Science+Business Media, LLC 2011
Keywords: Boolean function; Interval representation; Threshold function; Knowledge compression (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-010-0786-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:188:y:2011:i:1:p:263-278:10.1007/s10479-010-0786-y
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-010-0786-y
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().