The negative cycles polyhedron and hardness of checking some polyhedral properties
Endre Boros (),
Khaled Elbassioni (),
Vladimir Gurvich () and
Hans Tiwary ()
Annals of Operations Research, 2011, vol. 188, issue 1, 63-76
Abstract:
Given a graph G=(V,E) and a weight function on the edges w:E→ℝ, we consider the polyhedron P(G,w) of negative-weight flows on G, and get a complete characterization of the vertices and extreme directions of P(G,w). Based on this characterization, and using a construction developed in Khachiyan et al. (Discrete Comput. Geom. 39(1–3):174–190, 2008 ), we show that, unless P=NP, there is no output polynomial-time algorithm to generate all the vertices of a 0/1-polyhedron. This strengthens the NP-hardness result of Khachiyan et al. (Discrete Comput. Geom. 39(1–3):174–190, 2008 ) for non 0/1-polyhedra, and comes in contrast with the polynomiality of vertex enumeration for 0/1-polytopes (Bussiech and Lübbecke in Comput. Geom., Theory Appl. 11(2):103–109, 1998 ). As further applications, we show that it is NP-hard to check if a given integral polyhedron is 0/1, or if a given polyhedron is half-integral. Finally, we also show that it is NP-hard to approximate the maximum support of a vertex of a polyhedron in ℝ n within a factor of 12/n. Copyright Springer Science+Business Media, LLC 2011
Keywords: Flow polytope; 0/1-polyhedron; Vertex; Extreme direction; Enumeration problem; Negative cycles; Directed graph; Half-integral polyhedra; Maximum support; Hardness of approximation (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-010-0690-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:188:y:2011:i:1:p:63-76:10.1007/s10479-010-0690-5
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-010-0690-5
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().